This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STUDIES ON CYCLODIPHOSPHAZANES: SOME REACTIONS OF ACTIVE-METHYLENE GROUP CONTAINING COMPOUNDS

A. A. Salman a ; I. M. Abd-ellah a ; A. N. El-khazandar a ; Z. H. Abd El-Wahab a Chemistry Department, Faculty of Science, Al-Aznar University, Nasr City, Cairo, Egypt

To cite this Article Salman, A. A. , Abd-ellah, I. M. , El-khazandar, A. N. and El-Wahab, Z. H. Abd(1988) 'STUDIES ON CYCLODIPHOSPHAZANES: SOME REACTIONS OF ACTIVE-METHYLENE GROUP CONTAINING COMPOUNDS', Phosphorus, Sulfur, and Silicon and the Related Elements, 40:1,9-17

To link to this Article: DOI: 10.1080/03086648808072887 URL: http://dx.doi.org/10.1080/03086648808072887

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES ON CYCLODIPHOSPHAZANES: SOME REACTIONS OF ACTIVE-METHYLENE GROUP CONTAINING COMPOUNDS

A. A. SALMAN, I. M. ABD-ELLAH,† A. N. EL-KHAZANDAR and Z. H. ABD EL-WAHAB

Chemistry Department, Faculty of Science, Al-Aznar University, Nasr City, Cairo, Egypt

(Received September 5, 1988)

Interaction of hexachlorocyclodiphosphazanes (Ia-h) with ethyl-acetoacetate, sodium ethylacetoacetate and benzyl chloride are described. The structure of the obtained cyclodipnosphazane derivatives (II-IV) were proposed on the basis of microanalytical data, ir, uv, ¹H n.m.r and mass spectra. The mechanism of the reaction is also discussed.

Key words: hexachlorocyclodiphosphazanes; Cyclodiphosphazanes; Phosphonitrilic derivatives; Chlorophosphinimine dimers.

INTRODUCTION

The reaction of hexachlorocyclodiphosphazanes (I) with amino compounds has been investigated in great detail.¹⁻⁷ Recently, the authors showed that the reaction of hexachlorocyclodiphosphazanes (I) with bifunctional reagents (such as urea, thiourea and amino acids) furnished geminal and nongeminal aminocyclodiphosphazanes).^{8,9,10}

RESULTS AND CONCLUSIONS

In the present investigation, ethylacetoacetate (or its sodium salt), and benzyl chloride were allowed to react with halophosph(V)azanes (Ia-h) in inert solvents such as benzene to give a substitution product at the phosphorus atoms. The analytical data suggest structure (IIa-c), (IIIa-i) and (IVa-e) for these materials.

The assignment of the proposed structures (**Ha-c**), (**HIa-i**) and (**IVa-e**) was based on elemental analysis. Infrared spectra of these compounds showed characteristic $v_{P=C}$, $v_{P=O}$, $v_{P=N}$, $v_{C=O}$ and $v_{P=Cl}$ absorption bands which are summarized in Table I, the ¹H n.m.r. spectra of (**Ha**, c), (**HIa**, c-f, i) and (**IVa-d**) showed the characteristic proton signals, which are listed in Table II, the uv spectra showed the characteristic band at 270 nm for the phosphazane four-membered ring¹¹ (Figures 1 & 2).

[†] To whom correspondence should be addressed.

$$\begin{array}{c|c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ No. \ of \\ compound & & & & \\ \hline \textbf{Ia} & & & & & \\ C_6H_5 & & & & \\ \textbf{Ib} & & & & & \\ C_6H_4 & - & & & \\ \textbf{Id} & & & & & \\ C_6H_4 & - & & & \\ \textbf{Cl} & & & & & \\ \textbf{Id} & & & & & \\ \textbf{If} & & & & & \\ C_6H_4 & - & & & \\ \textbf{Cl} & & & & & \\ \textbf{If} & & & & \\ \textbf{Ig} & & & & & \\ \textbf{2-pyridyl} \\ \textbf{Ih} & & & & & \\ \end{array}$$

No. of compound R Z

IIa C_6H_4 —Cl—p CHCOOEt

IIb 2-pyridyl "

IIc 4-pyridyl "

Further insight concerning the structure of these products was gleaned from a consideration of their mass spectra. Thus, the mass spectrum of compound (IIIa), (IIIc) and (IIIf) showed the following masses at 422 m/e, 491 m/e and 482 m/e respectively as the highest mass in the spectrum corresponding to M⁺—2 Cl₂.

It should be noted that the parent peak of all these compounds does not appear in the spectra, presumably owing to the fact that these ions are meta stable and hence do not appear.

Mechanistic Proposal

We proposed that the direct interaction between a halophosphazane (I) and an active methylene group containing compounds or its sodium salt was found to be rapid. The degree of substitution and the pattern of halogen replacement was found to be sensitive to the steric characteristic of the reactants. Thus, the reaction between chlorocyclodiphosphazanes (I) and the active methylene group

containing compounds or its sodium salt led to the formation of cyclodiphosphazane derivatives (II-IV), through the elimination of HCl gas or NaCl:

 C_6H_4 — OCH_3 —o

C₆H₄—OCH₃-

4-pyridyl

IVc

IVd IVe

,,

,,

The direction and rate of the reaction depend on the nature of the active methylene group compound (R' or R") and also on the type of substituents present (R). It is evident that direct elimination of HCL or NaCl leads eventually to the proposed cyclodiphosphazane derivatives (II) and (III) and the oxycyclic structure (IV). When R' and R" groups are electron-withdrawing groups, this makes the CH proton in compound (II) more acidic and facilitates the removal of the methine proton in compounds (II) as HCl to give eventually compounds of the type (III).

TABLE I

Characteristic infrared stretching vibrations of cyclodiphosph(v)azane derivatives (IIa-c),

(IIIa-i) and (IVa-e)

NT C			Stretching	g frequencie	es cm ⁻¹		
No. of compound	ν _{P—N}	$ u_{\mathrm{P-Cl}}$	$v_{C=O}$	ν _{C—Η}	ω _Ρ C	ν _{Ο—Η} ^c	$\nu_{\mathrm{P}\!=\!\mathrm{O}}$
IIa	1090	500					_
IIb	1010	550	1670	_	_	3420	
He	$(1000)^{b}$	$(490)^{b}$	(1660) ^b	_		(3420) ^b	_
Illa	1080	470		3060	930		_
ШЬ	1090	440			1000		
Шс	1090	430		3100	950		_
IIId	1110	450		3020	945	_	
IIIe	1110	465			950		
IIIf	1110	490			1000		_
IIIg	$(1050)^{b}$	(470) ^b	_	(2860) ^b	(940) ^b	(3440) ^b	
Шĥ	(1120) ^b		(1670) ^b	(2860)b	(940) ^b	` <u> </u>	_
IIIi	(1000) ^b	(500) ^b	`— ′	· —	(940) ^b	$(3400)^{b}$	
IVa	1020	510					1245
IVb	1010	510		2880		_	1200
	(1050) ^b	(520) ^b		$(2880)^{b}$			(1250) ^b
IVc	1050	510	_	` <u></u>	_		1280
	$(1070)^{b}$	(510) ^b		(2840) ^b	_	(3440) ^b	$(1260)^{b}$
ľVď	1050	`500 ´	1760	2900		3400	1260
IVe	1120	_	1760				1270

^b Infrared data of the compound which obtained from sodium ethylacetoacetate and chlorocyclodiphosphazane (I).

^c The appearance of OH absorption peak in the infrared spectra and also in ¹H n.m.r. spectra may be due to some keto-enol toutomerism of the ethylacetoacetate radical:

TABLE II

Characteristic ¹H n.m.r. spectra of cyclodiophosphazane derivatives (II, III and IV)

N			Chemi	ical shift	(δ) in p_{\parallel}	pm.	_
No. of Compound	СН	COCH ₃	OCH ₃	CH ₂	CH ₃	Aromatic	OH—c
Ha He	_	2.2 (2.4) ^b	-	3.2 (3.2) ^b	1.0 0.9	7.2 (6.8) ^b	13.44 (14.0) ^b
IIIa IIIc IIId IIIe IIIf IIIi					3.2 — — — 1.3	7.3 7.2 7.2 7.0 7.2 (7.2) ^b	
IVa IVb IVc IVd	- 6.8 -	2.2 2.2 2.6 2.2	 3.8 4.0	3.3 3.2 3.7 3.8	1.0 0.7 0.8 1.3	7.3 7.3 7.3 7.4	13.0 13.8 — 13.0

^b Compounds obtained from sodium ethylacetoacetate and chlorocyclodiphosphazane (I).

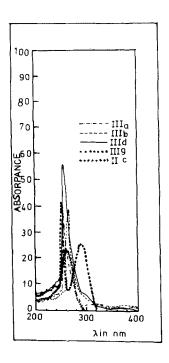


FIGURE 1 uv spectra of compds II-III.

Downloaded At: 19:19 29 January 2011

TABLE III
Analytical Data of cyclodiphosph(V)azane Derivatives (IIa-c, IIIa-i and IVa-e)

	Re	Reactants						Microanalysis	lysis
No.	Cyclodinhos-	CH. group	Z		Solvent of	Vield		Louint	aicu.
Compd.	Compd. phazene (I)	Compd.	C.	Colour	crystallization	%	Formula	%N	%P
IIa	Ic	Ethylacetoacetate	184	White	Benzene/	(2.9 g, 21%)	C24H26N2P2O6C14	ı	8.1/8.7
qII	(3.3 g, 0.01 mote) Ig	Ethylacetoacetate	164	Buff	Benzene/	(2.7 g, 42%)	$C_{22}H_{26}N_4P_2O_6CI_4$	1	9.6/9.6
IIc	(4.3 g, 0.01 more)	Sodium ethyl-	152	Buff	Greenst Carea Benzene/	(2.6 g, 40%)	C ₂₂ H ₂₆ N ₄ P ₂ O ₆ Cl ₄	1	9.5/6.6
IIIa	(4.3 g, 0.01 mole) Ia	acetoacetate ^a Benzyl chloride	148	Pale	diethyl ether Benzyl chloride/	(3.1 g, 28%)	C, H, N, P, CI	5.7/5.0	12.1/11.0
	9.1 g, 0.02 mole)	50 ml in excess		Yellow	diethyl ether	i ,			
HIP HIP	Tb (5.3 v = 0.01 mole)	Benzyl chloride	215	Yellow	Benzyl chlroide/	(1.0 g, 13.7%)	$C_{26}H_{18}N_2P_2CI_6$	5.0/4.4	8.8/9.8
IIIc	Ic	Benzyl chloride	153	Pale	Benzyl chloride/	(1.7 g, 12%)	$C_{26}H_{18}N_2P_2CI_6$	4.6/4.4	8.6/8.6
	(10.6 g, 0.02 mole)	50 ml in excess	į	Yellow	diethyl ether		; ;		0 0 0 7 7
PIII	Id (9.7 g, 0.02 mole)	Benzyl chloride 50 ml in excess	179	Pale Yellow	Benzyl chloride/ diethyl ether	(1.8 g, 18.4%)	$C_{28}H_{24}N_2P_2CI_4$	4.7/4.7	11.4/10.5
IIIe	(10.4 % 0.02 mole)	Benzyl chloride	175	Pale	Benzyl chloride/	(2.0 g, 21%)	$C_{28}H_{24}N_2P_2O_2CL_4$	1	6.6/9.6
Ш	(10.4 g, 0.02 mole) If	Benzyl chlroide	198	Pale	Benzyl chloride/	(4.0 g, 42%)	$C_{28}H_{24}N_2P_2O_2CI_4$	4.1/4.5	10.4/9.9
	(10.4 g, 0.02 mole)	50 ml in excess		Yellow	diethyl ether				

oaded At: 19:19 29 January 20	
loaded At: 19:19 29 January 2	
loaded At: 19:19 29 January	
loaded At: 19:19 29 January	C/
loaded At: 19:19 2	fanuary
loaded At: 19:1	29
loaded At: 1	∺
loaded At	13
loade	t
	loade

IIIg	Ia	Sodium ethylaceto-	176	Pale	Benzene/	$(0.63\mathrm{g},10\%)$	0_{24} H ₂₆ N ₂ P ₂ O ₆ Cl ₅	5.5/4.9	5.5/4.9 10.8/10.9
I	(4.6 g, 0.01 mole)	acetate ^a (0.02 mole)		Yellow	diethyl ether				
IIIh	II	Sodium ethyl-	194	Buff	Benzene/	$(0.3 \mathrm{g}, 4\%)$	$C_{26}H_{30}N_2P_2O_8Cl_2$ 3.7/4.4	3.7/4.4	8.6/8.6
	(5.2 g, 0.01 mole)	acetoacetatea			diethyl ether				
III	BI	Sodium ethyl-	216	Buff	Benzene/	$(3.3 \mathrm{g}, 56\%)$	$C_{22}H_{24}N_4P_2O_6Cl_2$	1	10.9/10.8
	(4.6 g, 0.01 mole)	acetoacetatea			diethyl ether				
IVa	EI	Ethylacetoacetate	182-	White	Benzene/	$(2.17 \mathrm{g}, 21\%)$	C ₁₈ H ₁₉ N ₂ P ₂ O ₄ Cl ₃ 6.1/5.7 12.7/12.5	6.1/5.7	12.7/12.5
	(9.1 g, 0.02 mole)	(5 ml, 0.04 mole)	184		diethyl ether	i			
ΙΛΡ	Iq	Ethylacetoacetate	191-	Yellow	Benzene/	$(1.7 \mathrm{g}, 32\%)$	C ₂₀ H ₂₃ N ₂ P ₂ O ₄ Cl ₃ 5.8/5.4 12.2/11.8	5.8/5.4	12.2/11.8
	(4.9 g, 0.01 mole)	(2.5 ml, 0.02 mole)	194		deithyl ether	· ·			
IVc	le	Ethylacetoacetate	178	Yellow	Benzene/	(1.3 g, 22%)	C ₂₀ H ₂₃ N ₂ P ₂ O ₅ Cl ₃ 4.6/5.0 11.3/11.2	4.6/5.0	11.3/11.2
	(5.2 g, 0.01 mole)	(2.5 ml, 0.02 mole)			diethyl ether	,	· · i		
PAI	JI	Ethylacetoacetate	215	Yellow	Benzene/	$(1.2\mathrm{g},7\%)$	C ₀ H ₂₃ N ₂ P ₂ O ₆ Cl ₃ 5.4/5.0 11.2/11.2	5.4/5.0	11.2/11.2
	(5.2 g, 0.01 mole)	(2.5 ml, 0.02 mole)			diethyl ether				
IVe	, II	Ethylacetoacetate	150	Yellow	Benzene/	$(3.8\mathrm{g},20\%)$	C, H, N, P, O, Cl,	1	12.9/12.5
	(4.3 g, 0.01 mole)	(2.5 ml, 0.02 mole)			diethyl ether	, ,			
Z	PI	Sodium ethyl-	194	Yellow	Ethanol	$(1.6\mathrm{g}, 14\%)$	CoH, N, P, O, CI,	1	11.5/11.8
	(4.9 g, 0.01 mole)	acetoacetate				,			
IVc	PI	Sodium ethyl-	177	Yellow	Ethanol	(1.2 g, 21%)	$C_{20}H_{23}N_2P_2O_6CI_3$	1	10.5/10.2
	(5.2 g, 0.01 mole)	acetoacetate							
PΛΙ	It	Sodium ethyl-	215	Yellow	Yellow Ethanol	$(0.3\mathrm{g},2\%)$	$C_{20}H_{23}N_2P_2O_6Cl_3$	5.5/5.0	1
	(5.2 g, 0.01 mole)	acetoacetate							

*Sodium ethylacetoacetate was prepared from ethylacetoacetate (2.5 ml, 0.02 mole) and 0.46 g sodiummetal in 30 ml benzene. The solution was heated under reflux for half hour.

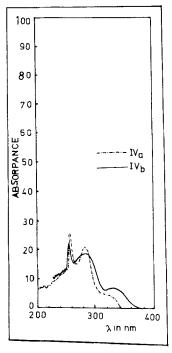


FIGURE 2 uv spectra of compds IV.

The formation of the terminal P=O group in some products demonstrates that the reaction in these products go according to the following reaction scheme to give the partially substituted products as follows:

The possibility, also exists that the nongeminal replacement pattern observed with compound (IV) may results from electron supply from substituent to

phosphorus, which lowers the reactivity of Cl—P—C-unit below that of a Cl—P—Cl unit, or also due to steric factors in which little difficulty is encountered in effecting complete replacement of halogens in spite of the steric retardation which must be involved and only a so called intermediate as the above compounds would be possible.

EXPERIMENTAL

Micoranalytical determinations were carried out by the microanalytical laboratory, Cairo University. Infrared spectra were recorded on a Unicam SP 1200 spectrophotometer (KBr technique). Ultraviolet spectra were recorded on a Unicam SP 8000 ultraviolet recording spectrophotometer.

¹H n.m.r. spectra were measured on a Varian EM-360L, 60 MH₂ spectrometer and mass spectrometric measurements were carried out using a Finnigan MAT 1125 mass spectrometer by the direct inlet system.

Preparation of compounds

The preparation and purification of hexachlorocyclodiphosphazanes (Ia-h) has been described previously. ^{12,13} All compounds used were B.D.H. reagent grade products.

Synthesis of cyclodiphosphazane derivatives (II-IV):

preparation of ethylacetoacetate derivatives:

A solution of ethylacetoacetate (or a suspension of sodium ethylacetoacetate) (0.02 mole) was added dropwise to a cold well-stirred solution of hexachlorocyclodiphosphazane (I) (0.01 mole) in 100 ml benzene during 1/2 hour. After the addition was completed, the reaction mixture was heated under reflux for three hours. After the completetion of the reaction (HCl gas ceased to evolve or NaCl precipitated), the reaction mixture was filtered while hot. The solid obtained after cooling was filtered, washed several times with benzene, diethylether and dried in vacuo to give the corresponding cyclodiphosphazane derivatives (IIa-c, IIIg-i and IVa-e) (Table III).

Preparation of benzyl chloride derivatives

The hexachlorocyclodiphosphazane (I) (0.02 mole) was added to excess benzyl chloride (50 ml) in a round-bottom flask fitted with a condenser. The reaction mixture was heated under reflux for ten hours. During this time, the hexachlorocyclodiphosphazane (I) was dissolved with the evolution of HCl gas. After completion of the reaction (HCl gas ceased to evolve), the reaction mixture was cooled to room temperature and the formed solid was filtered, washed several times with diethyl ether, then dried in vacuo to give the corresponding cyclodiphosphazane derivatives (IIIa-f) (Table III).

REFERENCES

- 1. E. H. M. Ibrahim and N. E. Amine, Egypt J. Chem., 22, No. 4, 307-312 (1979).
- 2. R. A. Shaw, Pure Appl. Chem., 52, 1083 (1980).
- 3. R. A. Shaw and M. Woods, Inorg. Nucl. Chem. Lett., 17, 181 (1981).
- 4. R. A. Shaw and M. Woods, J. Chem. Soc., Dalton, Trans., 1980 (1977).
- 5. R. A. Shaw and M. Woods, J. Chem. Soc., Dalton, Trans., 840 (1980).
- 6. S. S. Krishnamurthy and R. A. Shaw, Inorg. Nucl. Chem. Lett., 13, 407 (1977).
- 7. R. A. Shaw and M. Woods, J. Chem. Soc., Dalton, Trans., 621 (1984).
- 8. I. M. Abd-Ellah, E. H. M. Ibrahim and A. N. El-Khazandar, *Phosphorus and Sulfur J.*, 29, 239 (1987).
- 9. I. M. Abd-Ellah, E. H. M. Ibrahim and A. N. El-Khazandar, *Phosphorus and Sulfur J.*, 31, 13 (1987).
- 10. E. H. Ibrahim, I. M. Abd-Ellah and I. Alniemi, Phosphorus and Sulfur J., 33, 109 (1987).
- 11. M. Becke-Goehring and B. Bopple, Z. Anorg. Chem., 322, 239 (1963).
- 12. A. C. Chapman, W. S. Holmes, N. L. Paddock and H. T. Searle, J. Chem. Soc., 1825 (1961).
- I. N. Zhmurova and A. V. Kirsanov, (Inst. Org. Chem., Kiev). Zh. Obsch. Khim., 32, 2576 (1962); C. A. 58, 7848f (1963).